Unlock the door (unlock)

A cybersecurity firm has to develop an access control device to unlock a door. Unlocking requires a magnetic square card to be placed at an appropriate position over a squadre pad next to the door.

The problem is modeled as follows:

- The card is a \(n \times n \) 0/1 matrix, with \(n \geq 1 \)
- The pad is a \(m \times m \) 0/1 matrix, with \(m \geq 1 \)
- The card unlocks the door if it aligns with the pad, i.e., it appears as a submatrix of the pad up to rotations.

A \(m \times m \) matrix cell has coordinate \((i, j)\) if it lies on row \(i\) and column \(j\), for \(0 \leq i < m\) and \(0 \leq j < m\).

Example:

A 3 \(\times \) 3 card:

\[
\begin{array}{ccc}
0 & 1 & 0 \\
0 & 1 & 1 \\
0 & 1 & 0 \\
\end{array}
\]

A 5 \(\times \) 5 pad:

\[
\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

The card unlocks the door if it is rotate by 270 deg clockwise and its upper-left corner is placed at coordinates \((1, 2)\) of the pad:

\[
\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

Write a program that checks whether a card aligns with a pad. In case there were more possibilities of unlock the pad you must return the one with the lowest coordinate and the lowest rotation.

Implementation

You should submit a single file, with either a .c, .cpp, .java or .py extension.

Your program must read input data from stdin and write the output data into stdout.

stdin consists of \(1 + n + m\) lines:

- Line 1: The integers \(n\) and \(m\), space separated, the size of the card and the pad.
- Next \(n\) lines: \(n\) consecutive chars of 0/1.
- Next \(m\) lines: \(m\) consecutive chars of 0/1.

stdout consists of only one line:
• Line 1: Three integer $i\ j\ r$ if the card unlocks the pad if placed in (i, j) rotated by r deg, the string err if the card does not align with the pad.

Constraints

• $1 \leq n \leq 16$.
• $1 \leq m \leq 16$.

Scoring

Your program will be tested against 10 testcases, each of which is worth 10 points.

Examples

<table>
<thead>
<tr>
<th>stdin</th>
<th>stdout</th>
</tr>
</thead>
</table>
| 3 5
010
011
010
00000
00010
00111
00000
00000 | 1 2 270 |
| 2 3
11
11
010
011
110 | err |