CyberChallenge.IT 2024
 Programming Test

Subset Count [100 points]

Problem Statement

Alan Alright, guys, today we'll delve into the fascinating realm of public-key cryptography!
Bob Public key?! So, we just throw our passwords out there for everyone to see?
Alan ...not quite, Bob. But you're on the right track. In public-key cryptography, we share certain information publicly while keeping the rest private...
Charlie Oh, I get it! It's that thing where we can multiply numbers together, and then it's a real pain to figure out the original numbers!
Alan You've got the gist of it, Charlie. In public-key cryptography, we utilize one-way functions: mathematical problems that are easy to compute but challenging to reverse. It's like creating a maze: simple to design if you know the path, tricky to navigate backward.
Charlie That's what I said, isn't it?
Alan Of course factorization is one example of a hard problem, but there are many more: discrete logarithms, knapsack problems, learning with errors, solving multivariate systems...
Bob interrupts abruptly
Bob If there are so many, can't I just create my own?
Alan No, Bob, that's not how it works...
Bob Wait, hear me out! I give you a big set S of distinct positive integers and a number D. Then, I choose two subsets A and B of S with no elements in common. But here's the twist: if you pick any two numbers in the same subset (either A or B), their difference (in absolute value) won't be greater than D ! I bet that given S and D, you can't compute the maximum of the sum of the number of elements of A and the number of elements of B !
Alan This doesn't even make sense, Bob...
Bob Can you compute this number or not?
Alan is left speechless...

Problem Details

Input

The input consists of $2 T+1$ lines:

- Line 1: the number of testcases T
- Lines $2, \ldots, 2 T+1$: every group of 2 lines is formatted as follows
- Line 1: two space separated integers, N (the size of the set S) and the number D
- Line 2: N space-separated integers, representing the set S

Output

The output consists of T lines, each representing the answer to the corresponding testcase.

Scoring

Your program will be tested on a number of testcases grouped in subtasks. In order to obtain the score associated to a subtask, you need to correctly solve all its testcases.

- Subtask $1 \quad[30$ points]: $1 \leq T \leq 20,1 \leq N \leq 500,1 \leq D \leq 250$
- Subtask $2 \quad[30$ points]: $1 \leq T \leq 20,1 \leq N \leq 10000,1 \leq D \leq 5000$
- Subtask $3 \quad[40$ points]: $1 \leq T \leq 20,1 \leq N \leq 100000,1 \leq D \leq 50000$

For each testcase, every entry of the array S is a positive integer not exceeding 2^{60}.

Examples

OUTPUT

Explanation

In the first testcase, we can construct the sets as follows: $A=\{2672,2942,2893,2777\}, B=\{1598,1864,1672\}$, for a total of $4+3=7$ elements.

In the second one, a possibility for the sets is: $A=\{3176,3152,3140\}, B=\{278\}$, for a total of 4 elements.
In the third testcase, there are no elements with difference less or equal to 10 , so we can pick any pair of numbers and create two one-element sets, resulting in 2 total elements.

