CyberChallenge.IT 2024
 Programming Test

Pattern Recognition [100 points]

Problem Statement

Charlie Let me get this straight: in binary exploitation, we chuck massive strings into program input fields, and if we spot our string in memory where it shouldn't be, it's a problem, right?
Alan Spot on, Charlie! And there's more: sometimes, we have to delicately craft these strings to precisely pinpoint our location within them.
Bob Can't I just smash the keyboard randomly?
Alan And what if you need thousands of characters?
Bob Easy! I'll make them all the same and randomly tweak a few at the end!
Alan You could end up in a tight spot with that, Bob... Typically, we resort to de Bruijn sequences, but that's a tale for another time!
Bob I'm not interested in that. My method always works in practice! I can prove it!
Alan Alright, Bob, let's play a game: I'll give you a string S. How many strings R exist such that you can cover all of S using only copies of R ?
Bob The problem does not even make sense, what do you mean by cover?
Alan I mean that I can recreate the string S using copies of R, possibly overlapping them. For example, I can cover the string "xyxyxy" with " $x y$ ", "xyxy" and, of course, "xyxyxy" itself. Is it clear now?
Bob Uhm, yes, it makes sense...
Alan takes a breath, hoping this will bring a momentary pause to Bob's enthusiasm...

Problem Details

Input

The input consists of $3 T+1$ lines:

- Line 1: the number T of testcases you would need to answer
- Lines $2, \ldots, 3 T+1$: every group of 3 lines is formatted as follows
- Line 1: two space separated integers, N and M, respectively the length of the alphabet from which the string S is sampled, and the length of the string S itself
- Line 2: a string of length N, representing the alphabet
- Line 3: a string of length M, the actual string S

Output

The output consists of T lines, each representing the answer to the corresponding testcase.

Scoring

Your program will be tested on a number of testcases grouped in subtasks. In order to obtain the score associated to a subtask, you need to correctly solve all its testcases.

- Subtask $1 \quad[20$ points]: $1 \leq T \leq 100, N=2,1 \leq M \leq 12$
- Subtask $2 \quad[50$ points]: $1 \leq T \leq 100,1 \leq N \leq 12,1 \leq M \leq 500$
- Subtask $3 \quad[30$ points]: $1 \leq T \leq 100,1 \leq N \leq 20,1 \leq M \leq 20000$

Examples

Explanation

The given input contains 3 different testcases:

- The fist one, the string GGGSGGSGSGG, can only be covered with the full string itself
- The second one, CCCC, can be covered either with C, CC, CCC or CCCC
- The third one, HKHKHK, can be covered with HK, HKHK or HKHKHK.

