Polynomials (polynomials)

Given two numbers n and k we consider a polynomial valid if its degree is n and its coefficients are all integers not exceeding k by the absolute values.
More formally, denote the coefficients with $a_{0} a_{1} \ldots a_{n-1} a_{n}$.
Then the polynomial $P(x)=\sum_{i=0}^{n} a_{i} \cdot x^{i}=a_{0}+a_{1} \cdot x+\ldots+a_{n-1} \cdot x^{n-1}+a_{n} \cdot x^{n}$ is valid if:

- a_{i} is integer for every i.
- $\left|a_{i}\right| \leq k$ for every i.
- $a_{n} \neq 0$.

Given a valid polynomial $P(X)$, such that $P(2) \neq 0$, we want to count in how many ways we can change only one coefficient to get a valid polynomial $Q(x)$ of degree n such that $Q(2)=0$.

Example

Given $n=3$ and $k=12$ and the polynomial $P(x)=10-9 x-3 x^{2}+5 x^{3}$.
Where $P(2)=10-18-12+40=20 \neq 0$.
We can change one coefficient of $P(X)$ only in two different ways:

- $a_{0}=-10$, then $Q(x)=-10-9 x-3 x^{2}+5^{3}$ and $Q(2)=0$
- $a_{2}=-8$, then $Q(x)=10-9 x-8 x^{2}+5 x^{3}$ and $Q(2)=0$

Thus the solution is 2 .

Implementation

You should submit a single file, with either a .c, .cpp, . java or .py extension.
More formally, denote with $a_{0} a_{1} \ldots a_{n-1} a_{n}$ the coefficients
Your program must read the input data from stdin and write the output data into stdout. stdin consists of 2 lines:

- Line 1: Two space-separated integers n and k, the degree of the polynomial and the limit for absolute values of coefficients.
- Line 2: $n+1$ space-separated integers, the coefficients $a_{0} a_{1} \ldots a_{n-1} a_{n}$ of the polynomial.
stdout consists of only one line:
- Line 1: The number of ways to change one coefficient to get a valid polynomial $Q(X)$ with $Q(2)=0$.

No additional output should be printed.

Constraints

- $1 \leq n \leq 100$.
- $1 \leq k \leq 10000$.
- The given polynomial is always valid and $P(2) \neq 0$.

Scoring

Your program will be tested on several test cases grouped in subtask.
To achieve the score of a subtask, you need to correctly solve all of its test cases.

- Subtask 1 [40 points]: $n \leq 100$ and $k \leq 100$.
- Subtask 2 [60 points]: $n \leq 100$ and $k \leq 10000$.

Examples

	stdin	
3 12 10 -9 -3 5	2	

