

polynomials • EN

Polynomials (polynomials)

Given two numbers n and k we consider a polynomial *valid* if its degree is n and its coefficients are all integers not exceeding k by the absolute values.

More formally, denote the coefficients with $a_0 \ a_1 \ \dots \ a_{n-1} \ a_n$. Then the polynomial $P(x) = \sum_{i=0}^n a_i \cdot x^i = a_0 + a_1 \cdot x + \dots + a_{n-1} \cdot x^{n-1} + a_n \cdot x^n$ is valid if:

- a_i is integer for every i.
- $|a_i| \leq k$ for every *i*.
- $a_n \neq 0$.

Given a valid polynomial P(X), such that $P(2) \neq 0$, we want to count in how many ways we can change only one coefficient to get a *valid* polynomial Q(x) of degree n such that Q(2) = 0.

Example

Given n = 3 and k = 12 and the polynomial $P(x) = 10 - 9x - 3x^2 + 5x^3$.

Where $P(2) = 10 - 18 - 12 + 40 = 20 \neq 0$.

We can change one coefficient of P(X) only in two different ways:

- $a_0 = -10$, then $Q(x) = -10 9x 3x^2 + 5^3$ and Q(2) = 0
- $a_2 = -8$, then $Q(x) = 10 9x 8x^2 + 5x^3$ and Q(2) = 0

Thus the solution is 2.

Implementation

You should submit a single file, with either a .c, .cpp, .java or .py extension.

More formally, denote with $a_0 a_1 \ldots a_{n-1} a_n$ the coefficients

Your program must read the input data from stdin and write the output data into stdout.

stdin consists of 2 lines:

- Line 1: Two space-separated integers n and k, the degree of the polynomial and the limit for absolute values of coefficients.
- Line 2: n + 1 space-separated integers, the coefficients $a_0 a_1 \ldots a_{n-1} a_n$ of the polynomial.

stdout consists of only one line:

• Line 1: The number of ways to change one coefficient to get a valid polynomial Q(X) with Q(2) = 0.

No additional output should be printed.

Constraints

- $1 \le n \le 100.$
- $1 \le k \le 10\,000.$
- The given polynomial is always valid and $P(2) \neq 0$.

Scoring

Your program will be tested on several test cases grouped in subtask. To achieve the score of a subtask, you need to correctly solve all of its test cases.

- Subtask 1 [40 points]: $n \leq 100$ and $k \leq 100$.
- Subtask 2 [60 points]: $n \le 100$ and $k \le 10000$.

Examples

stdin	stdout
3 12 10 -9 -3 5	2