Unlock the door (unlock)

A cybersecurity firm has to develop an access control device to unlock a door. Unlocking requires a magnetic square card to be placed at an appropriate position over a squadre pad next to the door.
The problem is modeled as follows:

- The card is a $n \times n 0 / 1$ matrix, with $n \geq 1$
- The pad is a $m \times m 0 / 1$ matrix, with $m \geq 1$
- The card unlocks the door if it aligns with the pad, i.e., it appears as a submatrix of the pad up to rotations.

A $m \times m$ matrix cell has coordinate (i, j) if it lies on row i and column j, for $0 \leq i<m$ and $0 \leq j<m$.

Example:

	A $5 \times 5 \mathrm{pad}$
A 3×3 card:	00000
010	00010
011	00111
010	00000
	00000

The card unlocks the door if it is rotate by 270 deg clockwise and its upper-left corner is placed at coordinates $(1,2)$ of the pad:

00000
$00 \underline{0} \mathbf{1 0} \leftarrow$ Card aligns here after 270 deg clockwise rotation
00111
00000
00000

Write a program that checks whether a card aligns with a pad. In case there were more possibilities of unlock the pad you must return the one with the lowest coordinate and the lowest rotation.

Implementation

You should submit a single file, with either a .c, .cpp, .java or .py extension.
Your program must read input data from stdin and write the output data into stdout.
stdin consists of $1+n+m$ lines:

- Line 1: The integers n and m, space separated, the size of the card and the pad.
- Next n lines: n consecutive chars of $0 / 1$.
- Next m lines: m consecutive chars of $0 / 1$.
stdout consists of only one line:
- Line 1: Three integer $\mathbf{i} \mathbf{j} \mathbf{r}$ if the card unlocks the pad if placed in (i, j) rotated by r deg, the string err if the card does not align with the pad.

Constraints

- $1 \leq n \leq 16$.
- $1 \leq m \leq 16$.

Scoring

Your program will be tested against 10 testcases, each of which is worth 10 points.

Examples

stdin	stdout
35	12270
010	
011	
010	
00000	
00010	
00111	
00000	
00000	
23	err
11	
11	
010	
011	
110	

