Decrypt me (decrypt)

Alice sends Bob a secret message, composed of n bytes indexed with an integer ranging from 0 to $n-1$. She uses a simple encryption scheme that replaces every byte x of index i with a new value y, obtained as a right circular shift of x by $(i \bmod 8)$ positions, where $(i \bmod 8)$ denotes the remainder of the integer division of i by 8 (i \% 8 in C).
For instance, if the byte x of index 2 of the message contains the character 'a' (hex 61 in ASCII, binary 01100001), the Alice's encryption replaces x with y obtained as right circular shift of 2 positions, that is, 01011000, hex 58.

You are to help Bob decrypt Alice's message. Write a program that takes as input an encrypted text and produces as output the decrypted text by reversing Alice's scheme as follows:
Byte y with index i in the encrypted input text is replaced by byte x , where x is obtained by a left circular shift of the bits of y by i mod 8 positions.

Example:

Encrypted input bytes (hex): 61 B0 58 2C 16 0B 85 C2 61
Decrypted output text (ascii): "aaaaaaaaa"

		input y (data)							output (x) data			
\mathbf{i}	$\mathbf{i} \% \mathbf{8}$	hex	binary	char	dec	hex	binary					
0	0	61	$\underline{01100001}$	a	97	61	$\underline{01100001}$					
1	1	b0	$\underline{10110000}$	a	97	61	$\underline{01100001}$					
2	2	58	$01 \underline{011000}$	a	97	61	$\underline{01100001}$					
3	3	2 c	$001 \underline{01100}$	a	97	61	$\underline{01100001}$					
4	4	16	$0001 \underline{0110}$	a	97	61	$\underline{01100001}$					
5	5	0 b	$00001 \underline{011}$	a	97	61	$\underline{01100001}$					
6	6	85	$100001 \underline{01}$	a	97	61	$\underline{01100001}$					
7	7	c 2	$1100001 \underline{0}$	a	97	61	$\underline{01100001}$					
8	0	61	01100001	a	97	61	01100001					

Implementation

You should submit a single file, with either a .c, .cpp, .java or .py extension.
Your program must read input data from stdin and write the output data into stdout. stdin consists two lines:

- Line 1: The integer n, the number of bytes of the secret message.
- Line 2: n hex bytes, separated by space, representing the encrypted message stdout consists of only one line:
- Line 1: The decrypted text (ASCII encoded).

Constraints

- $1 \leq n \leq 1024$.
- All the input hex bytes are well formed (two digits, lowercase, from 00 to ff)

Scoring

Your program will be tested against 10 testcases, each of which is worth 10 points.

Examples

